
International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016                                                                                                     23 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

On The Evaluation of Best Fit Hyper-Elastic 
Model for Sandwich Beam with SB Rubber Core. 

B.Mounika Naidu ,V.B.S.Rajendra Prasad and  Dr.G.Venkata Rao.  
 

Abstract— The response of the system to the subjected to disturbing loads and vibrations can be controlled in many ways depending on weather active 
or passive vibration control. If the structure happens to be stiff enough then it would compensate for all vibration levels as its fundamental frequency is 
generally considered high. In the present scenario structures tend to be as light as, can be achieved at the expense of necessary lowering of stiffness 
even more than the mass is reduced, so that resonance frequencies often emerge where excitation frequencies are high. Layered composite beams that 
contain a damping core has been widely used in automotive and aerospace and even house hold electronic equipment to reduce the vibration effect. 
Analytical and numerical calculations on sandwich beams are cumber some. Therefore FEA software is widely used to solve the problems. An attempt is 
made to model three layered sandwiched beam with a rubber core exhibiting  hyperelastic  behaviour for which static and dynamic characteristics were 
found out,through which the most effective mathematical model is evolved at.  
 
Index Terms— Hyper elasticity, strain rate, modeshapes, non linearity, composites, static, transient, Mooney 3parameter, Ogden 1st order, 
Polynomial 2nd order, Arruda Boyce. 

——————————      —————————— 

1 INTRODUCTION                                                                     
HE Vibrations in a dynamic system can be controlled and 
reduced by a number of  means. They are classified as ac-
tive means, passive and semi active means. In the active 

means of vibration control, a wide variety of elements such as 
speakers, actuators and microprocessors are used to produce 
an out of Phase signal to cancel the disturbance. In passive 
methods of control some absorbers, mufflers and silencers are 
used to reduce the vibrations. In some cases by altering the 
system stiffness or mass, the resonant frequencies can be al-
tered and thereby the unwanted vibrations can be reduced for 
a fixed excitation frequency.  
However the vibrations need to be isolated or dissipated by 
using isolators or damping materials In semi active methods 
of controlling vibrations, a combination of active methods 
with passive elements is used to enhance their damping prop-
erties. Examples are electro-rheological damping, magneto- 
rheological systems and Active constrained layer damping 
(ACLD). Damping can be applied to any system by using spe-
cial class of visco - elastic and Hyper elastic material as a part 
of Passive Vibration control in most of the machines of present 
day. Damping refers to the extraction or dissipation of me-
chanical energy from a vibrating system generally by convert-
ing into heat. Damping in general is of two types first being 
material damping and second being structural damping. Ma-
terial damping involves the inherent property of the materials 
to dampen out the vibrations and Structural damping involves 
the damping of vibrations at various locations like base , joints 
etc.. Rubber is extensively used in damping the vibration of 
sandwiched beams and structure as a core material.The behav 

 
iour of the rubber is classified and Hyper elastic and Visco 
elastic. Elastomers , more precisely Rubber like materials usu-
ally have long molecular chains, which can with stand high 
strains and does not undergo permanent resilience and dura-
bility.These materials generally have a complicated behavior 
that generally exceed linear elastic theory and contain large 
deformations, plastic and visco –elastic properties There are 
three distinct categories of the stress-strain behaviour of elas-
tomers which make engineering design with these material so 
challenging.they are: 1) cyclic property changes,2)large de-
formation response low-modulus response to applied loads or 
deformation.3)non-linearity of the stress-Strain curve. 
Typical charecteristics of Rubber under loading include : 
1). Low Elastic Modulus, High elongation at break and non-
linearity. 
2).Hysterisis (this behaviour could not be easily represented 
with conventional methods) 
3).Stress relaxation 
4).Creep 
5). Mullins effect (large drop of stress between the successive 
loadings). 
 
2  MATERIAL MODEL OR CONSTITUTIVE EQUATIONS 
 

In FEA , the elastomers  like rubber are generally  mod-
eled  as hyper elastic . Hyper elastic prescribes a mathe-
matical condition. To be hyper elastic, there must Exist a 
strain energy function.. This has two properties:  
1).It is a scalar function of one of the strain or deformation 
tensor  
2).Its derivative w.r.t. strain component determines the 
corresponding stress component.  
The constitive equations corresponding to the material 
behavior will generally conform to  
Stress .vs. Extension for smaller strains and Strain energy 
density .vs. strain invariants for higher strains.  
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The simpler constitutive equations include ;  
Neo - Hookean and 2-constant Mooney - Rivlin equations.  
A simpler Mooney-Rivlin case include :  
σ = 2(λ - λ-2)( C10 + C01/λ).. Where  σ is the uni-axial ten-
sile stress and  λ is the extension ratio and C words are 
constants.  
as an example C10 = -38.3 kpa and C01= 640.5kpa.  

        Higher order formulations include : Arruda- Boyce , Og-
den etc 

2.1 Feature on behaviour of solid rubber. 
The material is close to ideally elastic, i.e.  When deformed at 
constant temperture, stress is a function only of strain and 
independent of history or rate of loading. The behaviour is 
reversible. material strongly resists volume changes the mate-
rial is very compliant in shear - shear modulus is of order 10-5 
times the most of metals.  
The shear modulus is temperature dependent. the material 
becomes stiffer when heated. When stretched the material 
gives off heat.  

 

3 SCOPE OF THE PRESENT WORK 
 
The present work is aimed at understanding the hyper elastic 
behaviour of rubber and studying the behaviour of rubber 
when used as sandwiched materials in forming a constrained 
layer damping. Further investigating the general behaviour of 
the sandwiched beam for which the behaviour of the core ma-
terial is considered to be hyper elastic. 

4 FINITE ELEMENT MODELING 
In the present work a sandwiched beam of 2.5 mm thick is 
considered in which there are two metal layers and in-
between a layer of rubber is provided to compensate for the 
constrained layer damping . Initially the behaviour of rubber 
is considered as Hyper elastic and the best fit model to model 
the Hyper elastic behaviour is evolved. The same model is 
applied to study the behaviour of the sandwiched beam when 
subjected to the variation in the core layer thickness under 
constant load. 

5 RESULTS AND DISCUSSIONS 
The beams with various boundary conditions are modelled 
and their deflections are studied .The effect of the thickness of 
the core material is also taken into consideration and incorpo-
rated in the work. 
 
 

 
. 

 
  

 

TABLE 2 
STATIC ANALYSIS  CORE 1.5CM THICKNESS 

NO
DES 

DEFLEC-
FLEC-
TION AT 
NODES 
of 
Mooney 

DEFLEC-
TION AT 
NODES of 
Ogden 

DEFLEC-
TION AT 
NODES of 
Polynomial 

DEFLEC-
TION AT 
NODES of 
Arruda-
Boyce 

1 0.0071949
1 

0.00719591 0.00718911 0.00720967 

2 0.0044406 0.0044406 0.00443943 0.00444366 

3 0.0209657 0.020967 0.02095 0.0210055 

4 0.0139222 0.0139227 0.0139162 0.0139343 

5 0.0262155 0.0262172 0.02621963 0.0262643 

6 0.0262229 0.0262246 0.0262037 0.0262718 

7 0.0262155 0.02662172 0.0261963 0.0262643 

8 0.0155822 0.0155821 0.0155853 0.0155915 

 
static analysis of sandwich beam with core element thickness 1.5cm and other 
two layers are of 0.5cm each. 

TABLE 1 
STATIC ANALYSIS CORE 2CM THICKNESS 

NO
DES 

DEFLEC-
TION AT 
NODES 
of 
Mooney 

DEFLEC-
TION AT 
NODES of 
Ogden 

DEFLEC-
TION AT 
NODES of 
Polynomial 

DEFLEC-
TION AT 
NODES of 
Arruda-Boyce 

1 0.0071949
1 

0.00719591 0.00718911 0.00720967 

2 0.0044406 0.0044406 0.00443943 0.00444366 

3 0.0209657 0.020967 0.02095 0.0210055 

4 0.0139222 0.0139227 0.0139162 0.0139343 

5 0.0262155 0.0262172 0.02621963 0.0262643 

6 0.0262229 0.0262246 0.0262037 0.0262718 

7 0.0262155 0.02662172 0.0261963 0.0262643 

8 0.0155822 0.0155821 0.0155853 0.0155915 

9 0.0130154 0.0130153 0.0130161 0.013016 

 
static analysis of sandwich beam with core element thickness 2cm and other 
two layers are of 0.25cm each. IJSER
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TABLE 3 
STATIC ANALYSIS  CORE SIZE 1 

NOD
ES 

DEFLEC-
TION AT 
NODES of 
Mooney 

DEFLECTION 
AT NODES of 
Ogden 

DEFLECTION 
AT NODES of 
Polynomial 

DEFLECTION 
AT NODES of 
Arruda-Boyce 

1 0.0012518
7 

0.00125187 0.00125187 0.00125187 

2 0.0094773
7 

0.00947737 0.00947737 0.00947737 

3 0.0018909
8 

0.00189098 0.00189098 0.00189098 

4 0.0018899
6 

0.00188996 0.00188996 0.00188996 

5 0.0022226
6 

0.00222266 0.002222658 0.00222266 

6 0.0022265 0.0022265 0.0022265 0.0022265 

7 0.0022256 0.0022256 0.0022256 0.0022256 

8 0.0016527 0.0016527 0.0016527 0.0016527 

 
static analysis of sandwich beam with core element thickness 1cm and other two 
layers are of 0.75cm each. 

TABLE 4 
STATIC ANALYSIS CORE 0.5CM THICKNESS 

NOD
ES 

DEFLEC-
TION AT 
NODES of 
Mooney 

DEFLECTION 
AT NODES of 
Ogden 

DEFLECTION 
AT NODES of 
Polynomial 

DEFLECTION 
AT NODES of 
Arruda-Boyce 

1 0.0005721
2 

0.00057215 0.000572153 0.00057215 

2 0.0005756
9 

0.00057569 0.000575687 0.00057569 

3 0.0005779
1 

0.00057791 0.00057791 0.00057791 

4 0.0013206
7 

0.00132037 0.00132037 0.0013337 

5 0.0013311
5 

0.0013316 0.0013316 0.00133396 

6 0.0013389 0.00133902 0.00133902 0.00134138 

7 0.0013425
1 

0.00134252 0.00134252 0.00134252 

8 5.95E-05 5.95E-05 5.95E-05 5.71E-05 

 
static analysis of sandwich beam with core element thickness 0.5cm and other 
two layers are of 1cm each. 

TABLE 6 
 TRANSIENT ANALYSIS CORE SIZE 2  

NOD
ES 

DEFLEC-
TION AT 
NODES of 
Mooney 

DEFLECTION 
AT NODES of 
Ogden 

DEFLECTION 
AT NODES of 
Polynomial 

DEFLECTION 
AT NODES of 
Arruda-Boyce 

1 2.50E-11 2.50E-11 2.52E-11 2.45E-11 

2 1.34E-10 1.34E-10 1.34E-10 1.35E-10 

3 6.00E-11 5.99E-11 6.06E-11 5.85E-11 

4 3.20E-11 3.19E-11 3.27E-11 3.20E-11 

5 5.18E-11 5.18E-11 5.26E-11 5.00E-11 

6 3.20E-11 3.19E-11 3.27E-11 3.02E-11 

7 5.82E-10 5.82E-10 5.81E-10 5.83E-10 

8 6.75E-10 6.75E-10 6.75E-10 6.77E-10 

 
Transient analysis of sandwich beam with core element thickness 2cm and other 
two layers are of 0.25cm each. 

TABLE 5 
STATIC ANALYSIS CORE SIZE 0.25 

NOD
ES 

DEFLEC-
TION AT 
NODES of 
Mooney 

DEFLECTION 
AT NODES of 
Ogden 

DEFLECTION 
AT NODES of 
Polynomial 

DEFLECTION 
AT NODES of 
Arruda-Boyce 

1 0.0002935
3 

0.00029359 0.000293591 0.00029354 

2 0.0002926
6 

0.00029416 0.000293419 0.00029599 

3 0.0002882
2 

0.00029056 0.000293319 0.00029587 

4 0.0008575
8 

0.00085106 0.000849135 0.00085579 

5 0.0008562
6 

0.00085693 0.000854473 0.00085611 

6 0.0008448
6 

0.00085636 0.0008449 0.0008611 

7 0.0003664
4 

0.00036897 0.000368969 0.0003671 

8 0.0006372
6 

0.00064557 0.000645573 0.00064745 

 
static analysis of sandwich beam with core element thickness 0.25cm and other 
two layers are of 1.125cm each. 
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TABLE 7 
TRANSIENT ANALYSIS OF CORE 0.25CM THICKNESS 

NOD
ES 

DEFLEC-
TION AT 
NODES of 
Mooney 

DEFLECTION 
AT NODES of 
Ogden 

DEFLECTION 
AT NODES of 
Polynomial 

DEFLECTION 
AT NODES of 
Arruda-Boyce 

1 1.22E-11 1.22E-11 1.19E-11 1.22E-11 

2 1.23E-11 1.23E-11 1.1928 E-011 1.23E-11 

3 1.21E-11 1.21E-11 1.18E-11 1.21E-11 

4 2.82E-11 3.13E-11 3.11E-11 3.19E-11 

5 2.88E-11 2.88E-11 2.80E-11 2.88E-11 

6 3.14E-11 3.14E-11 3.06E-11 3.14E-11 

7 1.30E-11 1.30E-11 1.28E-11 1.30E-11 

8 2.35E-11 2.35E-11 2.30E-11 2.35E-11 

 
static analysis of sandwich beam with core element thickness 0.5cm and other 
two layers are of 1cm each. 

 
Fig. 2. Represent deflection curves with respect to node num-
bers.x-axis represents node numbers and yaxis represent de-
flection for constant load 20newtons and with core thickness 
1.5cm core 

 

 
Fig. 3. Represent deflection curves with respect to node num-
bers.x-axis represents node numbers and yaxis represent de-
flection for constant load 20newtons and with core thickness 
1cm core 

 

 
Fig. 4. Represent deflection curves with respect to node num-
bers.x-axis represents node numbers and yaxis represent de-
flection for constant load 20newtons and with core thickness 
0.5cm core 

 

 
Fig. 1. Represent deflection curves with respect to node num-
bers.x-axis represents node numbers and yaxis represent de-
flection for constant load 20newtons and with core thickness 
2cm core 
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6 CONCLUSIONS 
The present work is aimed at studying the Hyper elastic 

damping characteristics of a sandwiched beam with Hyper elastic 
core for varying thickness of the core material..The difference in 
boundary conditions has a large effect on the static deflection and 
dynamic response are absorbed. Increase in the core thickness has 
resulted in decrease in the deflection of the sandwiched beams in 
static and transient analysis. 
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Fig. 5. Represent deflection curves with respect to node num-
bers.x-axis represents node numbers and yaxis represent de-
flection for constant load 20newtons and with core thickness 
0.25cm core 

 

 
Fig. 6. Represent deflection curves with respect to node num-
bers.x-axis represents node numbers and yaxis represent de-
flection for constant load 20newtons and with core thickness 
2cm core 

 

 
Fig. 7. Represent deflection curves with respect to node num-
bers.x-axis represents node numbers and yaxis represent de-
flection for constant load 20newtons and with core thickness 
0.25cm core 
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